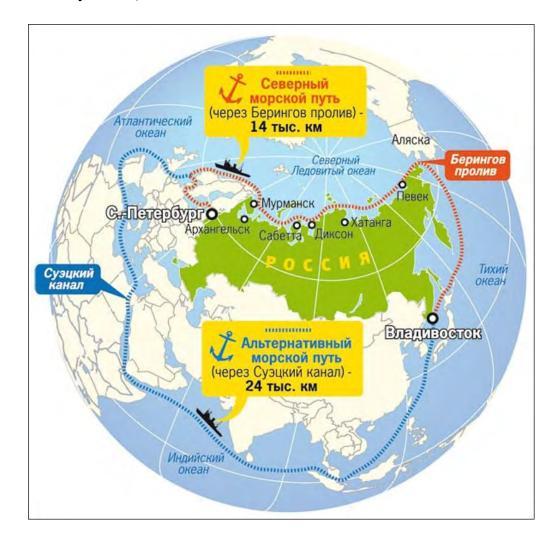


ПЕРСПЕКТИВЫ РАЗВИТИЯ СУДОХОДСТВА НА СЕВМОРПУТИ

Соколов Сергей Сергеевич

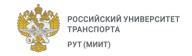
Историческая справка

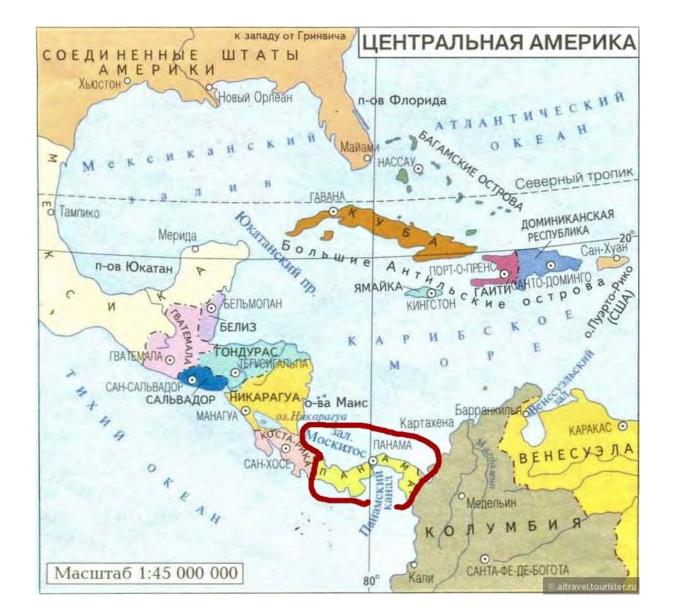
Севморпуть


Севморпуть

Севморпуть и Суэцкий канал

Севморпуть и Северо-западный




проход

Панамский канал

Сравнение маршрутов

Пункт отправления-	Морские пути			
назначения	Северо-Восточный	Северо-Западный	Суэцкий канал и	Панамский канал
	проход	проход	Малаккский пролив	
Роттердам-Шанхай	16100	15793	19550	25588
Бордо-Шанхай	16100	16750	19030	24980
Мапсель-Шанхай	19160	19718	16460	26038
Джоя-Тауро-Гонконг	20230	20950	14093	25934
Барселона-Гонконг	18950	20090	14693	25044
Нью-Йорк-Шанхай	17030	19893	22930	20880
Нью-Йорк-Гонконг	18140	20985	21570	21260



План развития СМП до 2035 года

УТВЕРЖДЕН РАСПОРЯЖЕНИЕМ ПРАВИТЕЛЬСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ОТ 01.08.2022 № 2115 Р

КЛЮЧЕВЫЕ ОСОБЕННОСТИ:

- ✓ ВПЕРВЫЕ ПРИНЯТ СТРАТЕГИЧЕСКИЙ ГОСУДАРСТВЕННЫЙ ДОКУМЕНТ, РАЗРАБОТАННЫЙ ПО ПОРУЧЕНИЮ ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ИТОГАМ СОВЕЩАНИЯ ПО ВОПРОСУ РАЗВИТИЯ АРКТИЧЕСКОЙ ЗОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ 13 АПРЕЛЯ 2022 ГОДА.
- ✓ ПОДПИСАНЫ ТРЕХСТОРОННИЕ СОГЛАШЕНИЯ МЕЖДУ МИНВОСТОКРАЗВИТИЯ РОССИИ, ГОСКОРПОРАЦИЕЙ «РОСАТОМ» И ОСНОВНЫМИ ГРУЗООТПРАВИТЕЛЯМИ, В ЦЕЛЯХ ДОСТИЖЕНИЯ ГРУЗОПОТОКА И СОЗДАНИЯ НЕОБХОДИМОЙ ИНФРАСТРУКТУРЫ.
- ✓ ПЛАН ПРЕДУСМАТРИВАЕТ ЦЕЛЕВЫЕ ПОКАЗАТЕЛИ ПО ГРУЗОПОТОКУ, ОБЪЕМ И ИСТОЧНИКИ ФИНАНСИРОВАНИЯ.

План развития СМП до 2035 года

152 МЕРОПРИЯТИЯ / 5 БЛОКОВ

1. ГРУЗОВАЯ БАЗА

- ГРУЗОВАЯ БАЗА
- КАБОТАЖНЫЕ ПЕРЕВОЗКИ
- ТРАНЗИТНЫЕ ПЕРЕВОЗКИ
- ПЕРСПЕКТИВНАЯ ГРУЗОВАЯ БАЗА

3. ГРУЗОВОЙ И ЛЕДОКОЛЬНЫЙ ФЛОТ

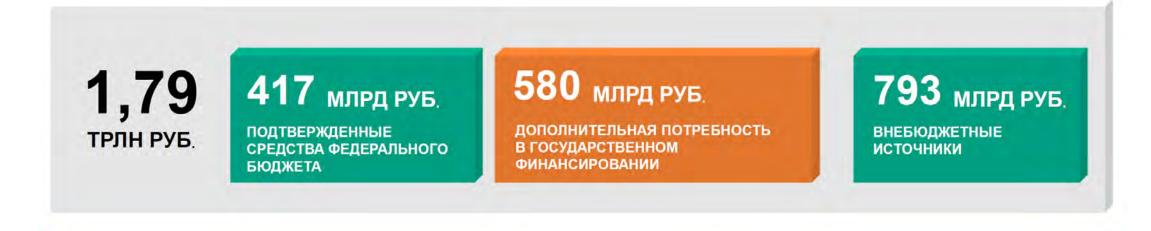
- АРКТИЧЕСКИЙ ГРУЗОВОЙ ФЛОТ
- ЛЕДОКОЛЬНЫЙ ФЛОТ
- АРКТИЧЕСКИЕ СУДОСТРОИТЕЛЬНЫЕ
 И СУДОРЕМОНТНЫЕ ПРОИЗВОДСТВЕННЫЕ МОЩНОСТИ

УПРАВЛЕНИЕ И РАЗВИТИЕ СУДОХОДСТВА ПО СМП

- АНАЛИЗ И ПРОГНОЗИРОВАНИЕ СУДОПОТОКА
- ИНФОРМАЦИОННЫЕ И ЦИФРОВЫЕ УСЛУГИ
 В АКВАТИРИИ СМП

2. ТРАНСПОРТНАЯ ИНФРАСТРУКТУРА

- ПОРТОВАЯ И СОПУТСТВУЮЩАЯ НАЗЕМНАЯ ТРАНСПОРТНАЯ ИНФРАСТРУКТУРЫ
- ЖЕЛЕЗНОДОРОЖНЫЕ ТРАНСПОРТНЫЕ КОРИДОРЫ
- РЕЧНЫЕ ТРАНСПОРТНЕ КОРИДОРЫ
- ДНОУГЛУБЛЕНИЕ В АКВАТОРИИ СМП И В ПРИЛЕГАЮЩИХ МОРСКИХ АКВАТОРИЯХ, А ТАКЖЕ В РЕКАХ,ВПАДАЮЩИХ, В ДАННЫЕ АКВАТОРИИ

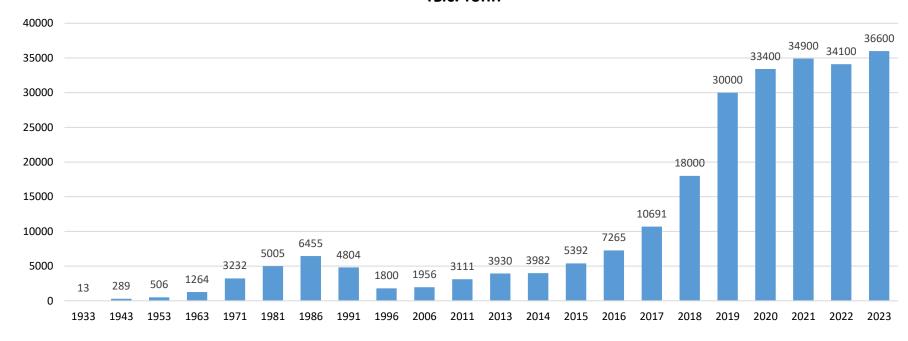

4. БЕЗОПАСНОСТЬ СУДОХОДСТВА ПО СМП

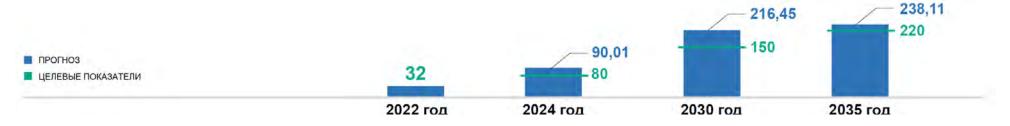
- АРКТИЧЕСКАЯ СПУТНИКОВАЯ ГРУППИРОВКА
- ГИДРОГРАФИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
- ГИДРОМЕТЕОРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПЛАВАНИЯ СУДОВ В АКВАТОРИИ СМП
- АВАРИЙНО-СПАСАТЕЛЬАЯ ИНФРАСТРУКТУРА
- медицинское обеспечение судоходства
- экологическая безопасность судоходства
- КАДРОВОЕ ОБЕСПЕЧЕНИЕ СУДОХОДСТВА

План развития СМП до 2035 года

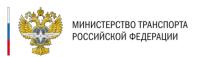
СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЙ ЭФФЕКТ

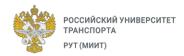
ИНДИКАТИВНЫЙ ОБЪЕМ 31,5 трлн руб. ВВП до 2035 года


ИНДИКАТИВНЫЕ НАЛОГОВЫЕ ПОСТУПЛЕНИЯ 13,2 трлн руб. ИНДИКАТИВНЫЕ НАЛОГОВЫЕ ПОСТУП

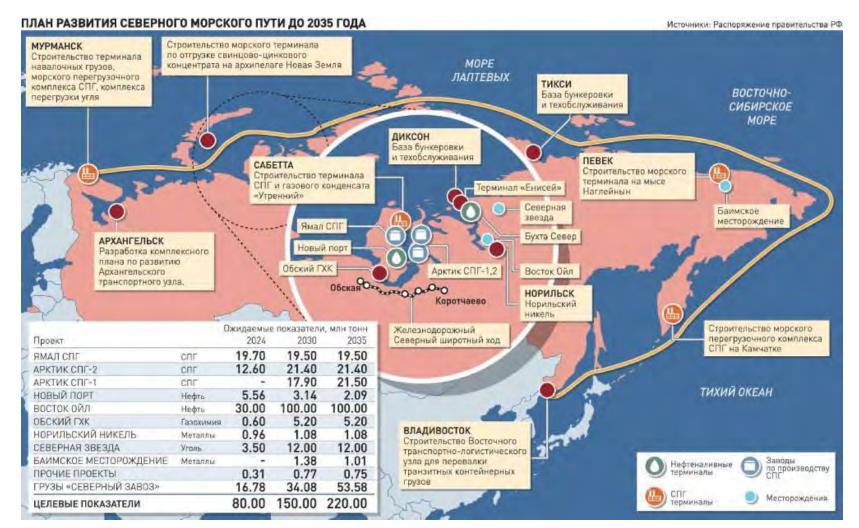


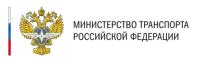
Грузооборот по Северному морскому пути, тыс. тонн





Грузы

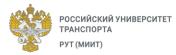




Грузы

Инфраструктура





Флот

539,6 млрд руб.

119,6 млрд руб.

ПОДТВЕРЖДЕННЫЕ СРЕДСТВА ФЕДЕРАЛЬНОГО БЮДЖЕТА

143,3 млрд руб.

дополнительная ПОТРЕБНОСТЬ В ГОСУДАРСТВЕННОМ ФИНАНСИРОВАНИИ

276,7 млрд руб..

ВНЕБЮДЖЕТНЫЕ СРЕДСТВА

УАЛ 22220 — 5 СЕРИЙНЫЙ

6. УАЛ 22220 — 6 СЕРИЙНЫЙ

7. СТРОИТЕЛЬСТВО дополнительных 4 ЛЕДОКОЛОВ

ДЛЯ РЕАЛИЗАЦИИ ПРОЕКТА

45 есть

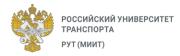

32 строятся

55 необходимо построить

ССК «ЗВЕЗДА»

Флот

Icebreaker6 (ЛЛ6) — выполнение ледокольных операций в портовых и при портовых акваториях, а также в замерзающих неарктических морях при толщине льда **до 1,5 м**. Способен продвигаться непрерывным ходом в сплошном ледовом поле толщиной до 1,0 м;


Icebreaker7 (ЛЛ7) — выполнение ледокольных операций на прибрежных трассах арктических морей в зимневесеннюю навигацию при толщине льда **до 2,0 м** и в летне-осеннюю навигацию при толщине льда **до 2,5 м**; в неарктических замерзающих морях и в устьевых участках рек, впадающих в арктические моря, при толщине льда **до 2,0 м**. Способен продвигаться непрерывным ходом в сплошном ледовом поле толщиной **до 1,5 м**. Суммарная мощность на гребных валах **не менее 11 МВт**;

Icebreaker8 (ЛЛ8) — выполнение ледокольных операций: на прибрежных трассах арктических морей в зимневесеннюю навигацию при толщине льда **до 3,0 м** и в летне-осеннюю навигацию — без ограничений. Способен продвигаться непрерывным ходом в сплошном ледовом поле толщиной **до 2,0 м**. Суммарная мощность на гребных валах **не менее 22 МВт**;

Icebreaker9 (ЛЛ9) — выполнение ледокольных операций в арктических морях в зимне-весеннюю навигацию при толщине льда **до 4,0** м и в летне-осеннюю навигацию — без ограничений. Способен продвигаться непрерывным ходом в сплошном ледовом поле толщиной **до 2,5 м**. Суммарная мощность на гребных валах **не менее 48 МВт**.

Для сравнения. Футбольное поле:

Длина: минимум 90 м,

максимум 120 м

Ширина: минимум 45 м,

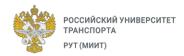
максимум 90 м

Флот

Принадлежит компании Совкомфлот. **Габариты**:

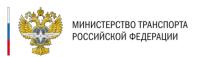
длина — 299,0 м, ширина — 50,13 м, высота по борту — 26,5 м, осадка — 13,0 м.

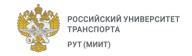
Перспективы и инновации



Перспективы и инновации

Перспективы и инновации


Сегодняшний день



Санкции — Развитие



Автономное судоходство

– ключевое направление инновационного развития водного транспорта

MOPE -

Maritime Autonomous Surface Ships (MASS)

Финский автомобильный паром «Falco» и его ЦДУ в Турку

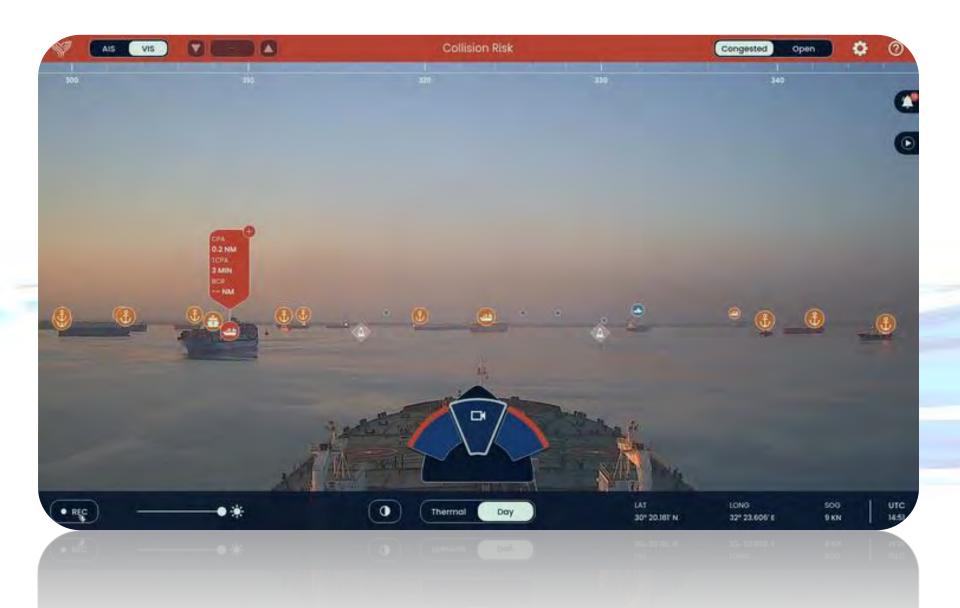
Французское исследовательское судно «Monterey Bay Aquarium» и ЦДУ в Тулоне

Американские автономные буксиры Rachael Allen с системой Sea Machines SM300 и Nellie Bly (США)

Американское научно-исследовательское судно «Mayflower» и его система ИИ Al Captain

Японские автономные суда, эксплуатирующиеся в тестовом режиме - паром Sunflower Shiretoko, Ro-Ro судно «Iris Leader», контейнеровоз «Mikage», паром «Soleil»

Японский контейнеровоз «Suzaku» и его ЦДУ в Цу-Мацусака



Система Orca AI в действии: распознавание на рейде Токио

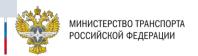
Корейский танкер-газовоз Prism Courage прошел 11 тыс. миль в автономном режиме

Норвежский автономный контейнеровоз «Яра Биркеланд» и его ЦДУ в Бревике

Норвежские электрические паромы (2 единицы) с технологией АС

Китайский носитель беспилотников Чжу Хайюнь (Zhu Hai Yun)

Китайский контейнеровоз «Джи Фей» фирмы Navigation Brilliance (Qingdao) Technology и его ЦДУ в Циндао

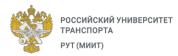




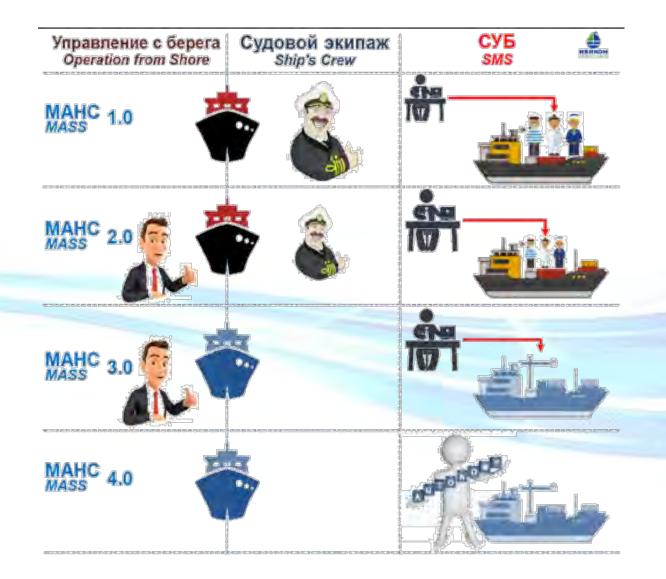
Танкер «Михаил Ульянов»

Работа сухогруза «Пола Анфиса» в автономном режиме

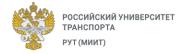
Шаланда «Рабочая»

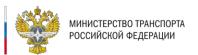


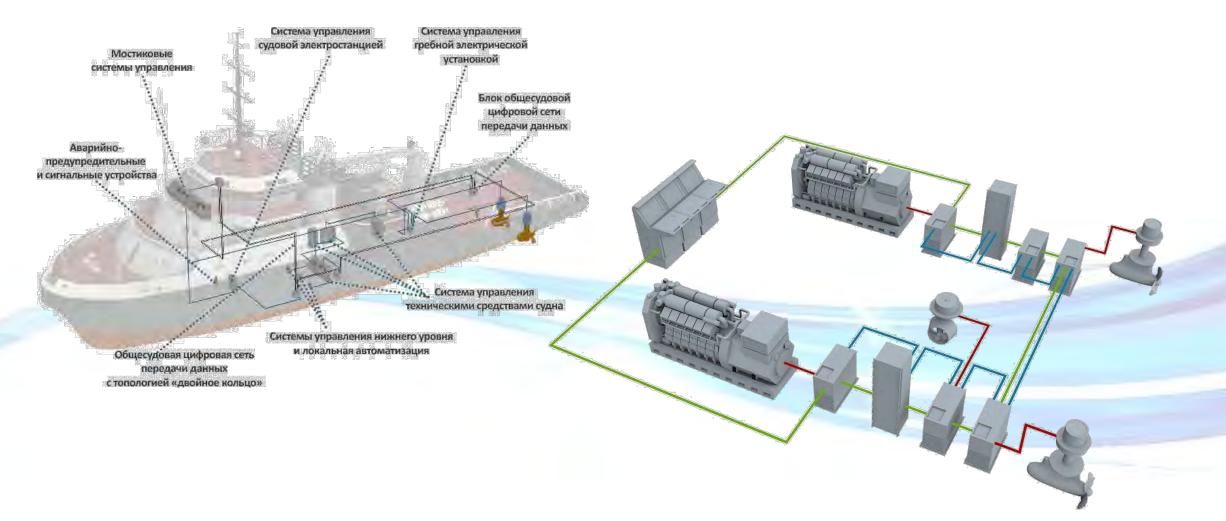
Паромы «Маршал Рокоссовский» и «Генерал Черняховский»



Уровни автономности судна



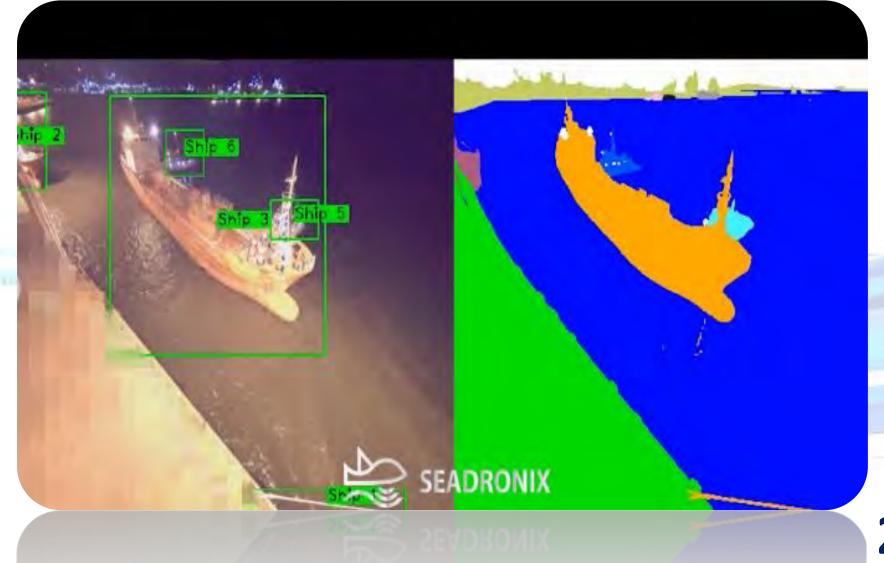

Необходимость в широкополосной связи с береговым центром наблюдения / управления

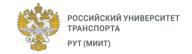


Высокоавтоматизированная судовая установка

Видеокамеры разных диапазонов (оптический, инфракрасный, тепловой)

Микроволновый радар, лазерный радар (лидар)

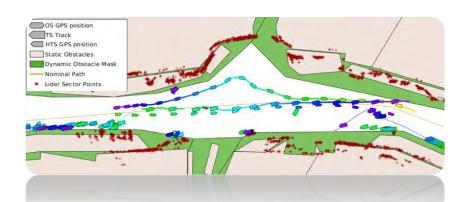



Распознавание объектов и постройка карты глубин

ВНУТРЕННИЕ ВОДНЫЕ ПУТИ -

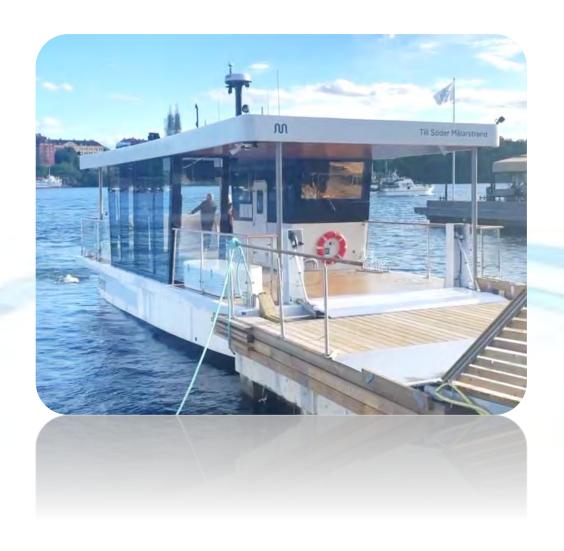
Unmanned surface vehicle (USV)

Пассажирская переправа Buffalo Automation (США) и речное такси MIT CSAIL (США) и AMS Institute (Голландия) истерство транспорта сийской федерации

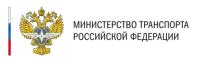


Пассажирский паром milliAmpere 2 и его ЦДУ в Тронхейме (фирма NTNU и Исследовательский совет Норвегии)

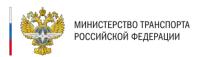
ИСТЕРСТВО ТРАНСПОРТА СИЙСКОЙ ФЕДЕРАЦИИ

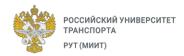


Автономный электропаром Zeam (Стокгольм) Норвежского университета естественных и технических наук и судостроительной компании Brødrene Aa

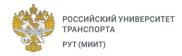

ИСТЕРСТВО ТРАНСПОРТА СИЙСКОЙ ФЕДЕРАЦИИ

Дистанционно управляемый буксир-толкач проекта 1741





ЦДУ буксира-толкача проекта 1741 на площадке Обь-Иртышского пароходства



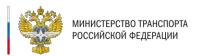
Гидрографический безэкипажный катер «Визир-М» («Кингисеппский машиностроительный завод») и катер рыбинского завода «Вымпел»

Апробация технологий автономного судовождения на опытном маломерном судне РУТ

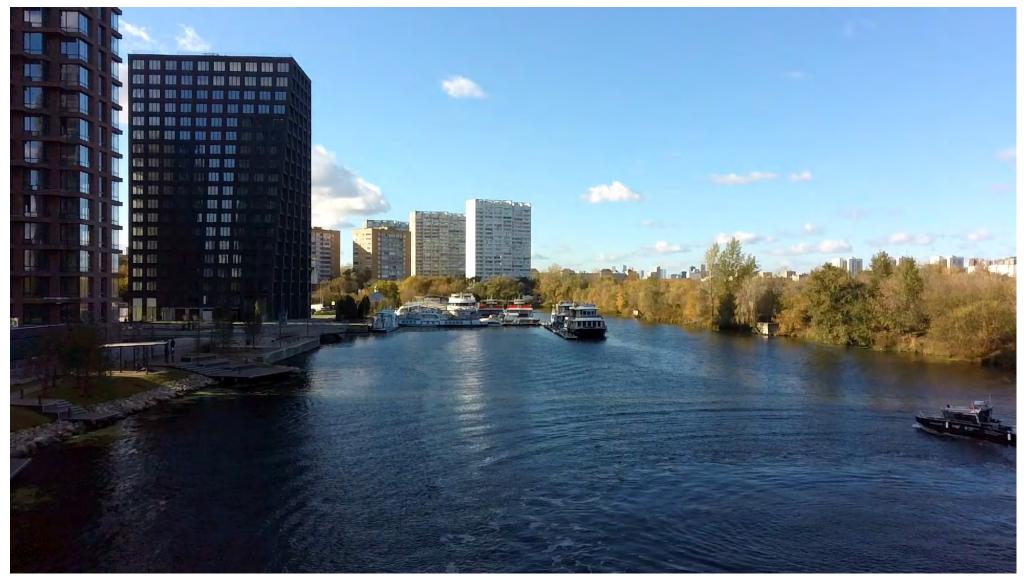
Поэтапно реализуется НИОКР «Создание алгоритмов комплексной системы управления нижнего уровня макетом автономного судна»: в 2022 г. создан прототип системы управления судном нижнего уровня, установлен на маломерном судне, в 2023 г. завершены испытания на уровне автономности 2, проводятся испытания на уровне 3 (судно управляется с берега), до конца 2024 г. планируем выйти на уровень 4.

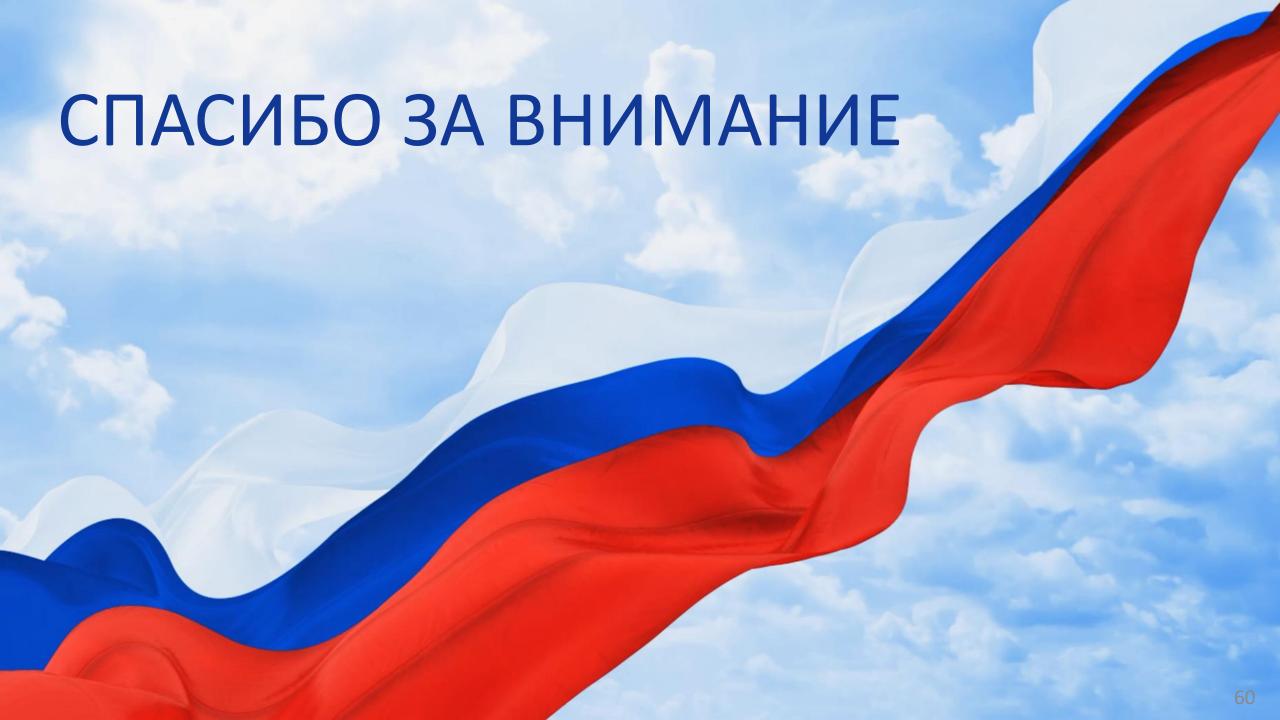
Длина (м)	8,9
Ширина (м)	2,5
Грузоподъемность (кг)	1500
Мощность двигателя (л/с)	300
Пассажировместимость	7


Состав аппаратной структуры решения



Система, включающая: многоканальную систему технического зрения в видимом, инфракрасном, радио- и гидроакустическом диапазоне, автоматическую трассировку маршрутов, оптимизацию траекторий движения, автоматическое маневрирование, автоматический вход в порты, швартовку, автоматическое предотвращение столкновений с кораблями и другими препятствиями





Испытания маломерного судна в автоматическом режиме

